二重积分极坐标(二重积分极坐标化成普通坐标)
大家好,今天来为大家解答关于二重积分极坐标这个问题的知识,还有对于二重积分极坐标化成普通坐标也是一样,很多人还不知道是什么意思,今天就让我来为大家分享这个问题,现在让我们一起来看看吧!
1二重积分极坐标角度的范围怎么定?
分三种情况:
1、原点(极点)在积分区域的内部,角度范围从0到2pi。
2、原点(极点)在积分区域的边界,角度范围从区域的边界,按逆时针方向扫过去,到另一条止。
3、原点(极点)在积分区域之外,角度范围从区域的靠极轴的边界,按逆时针方向扫过去,到另一条止。
二重积分简介:
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积,重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等,平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
2在“二重积分”中极坐标角度如何规定?
一、一般分3种情况:
原点(极点)在积分区域的内部,角度范围从0到2pi;
2.原点(极点)在积分区域的边界,角度范围从区域的边界,按逆时针方向扫过去,到另一条止;
3.原点(极点)在积分区域之外,角度范围从区域的靠极轴的边界,按逆时针方向扫过去,到另一条止。
二、方法:
1、将积分区域,分成一个个单连通区域;
2、所谓的单连通区域,就是任何极半径, 最多只能穿透一次、再触及区域曲线;
3、每一个单连通区域,都具有两根切线;
4、对每一个单连通区域,积分时的角度, 按顺时针方向,从第一根切线的角度, 积分到第二根曲线的角度;
5、整体的积分,就是对每个单连通区域的积分, 然后求和,得到最后结果;
6、角度必须是弧度制。
3二重积分计算(极坐标形式)
极坐标下的二重积分计算法
极坐标系下,直线x=1的方程是ρcosθ=1,即ρ=1/cosθ。射线y=x的方程是θ=π/4。
确定θ的取值范围:积分区域夹在射线θ=0与θ=π/4之间,所以θ的取值范围是 0≤θ≤π/4。
确定ρ的取值范围:从极点作射线与直线ρ=1/cosθ相交,所以ρ的取值范围是 0≤ρ≤1/cosθ。
所以,二重积分在极坐标系下表示为:∫0~π/4 dθ ∫0~1/cosθ f(ρcosθ,ρsinθ) ρdρ
4用极坐标计算二重积分具体步骤是什么?
1.变量代换x=rcost,y=rsint
2.求出极坐标系下积分局域的表达形式(讲x,y代入)
3.将被积函数做变量替换,同时dxdy=-rsintcostdtdr(Jacobi行列式消去了一个r,所以是r的一次方)
4.在新的积分区域内求二重积分
5什么情况下用极坐标计算二重积分
用极坐标计算二重积分没有一定之规,极坐标一般用于积分域是圆或其中一部分的,积分域用极坐标表示比直角坐标表示明显简单的,积分函数含有 x^2+y^2,特别是含有它们的分数方次的情况。
例如以下两种情形通常的二重积分使用极坐标计算:
1、积分区域D与圆有关(可以是部分圆域,例如圆周与直线所围成的区域)。
2、被积函数f(x,y)中含有形如x²+y²,xy,y/x,x/y的式子。
若1、2同时满足,则必定要采用极坐标计算,但如果仅满足其中一个,特别是1不满足时,有时用直角坐标计算反而更方便。
扩展资料:
由于极坐标的坐标系统是基于圆环的,所以许多有关曲线的方程,极坐标要比直角坐标系(笛卡儿坐标系)简单得多。比如双纽线,心脏线。
极坐标的玫瑰线(polar rose)是数学曲线中非常著名的曲线,看上去像花瓣,它只能用极坐标方程来描述;极坐标方程经常会表现出不同的对称形式,如果ρ(−θ)= ρ(θ),则曲线关于极点(0°/180°)对称,如果ρ(π-θ)= ρ(θ),则曲线关于极点(90°/270°)对称,如果ρ(θ−α)= ρ(θ),则曲线相当于从极点逆时针方向旋转α°。
二重积分极坐标的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于二重积分极坐标化成普通坐标、二重积分极坐标的信息别忘了在本站进行查找喔。